Multicategory angle-based large-margin classification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multicategory large-margin unified machines

Hard and soft classifiers are two important groups of techniques for classification problems. Logistic regression and Support Vector Machines are typical examples of soft and hard classifiers respectively. The essential difference between these two groups is whether one needs to estimate the class conditional probability for the classification task or not. In particular, soft classifiers predic...

متن کامل

Multicategory large margin classification methods: Hinge losses vs. coherence functions

Article history: Received 3 August 2013 Received in revised form 9 May 2014 Accepted 16 June 2014 Available online 20 June 2014

متن کامل

Coherence Functions for Multicategory Margin-based Classification Methods

Margin-based classification methods are typically devised based on a majorizationminimization procedure, which approximately solves an otherwise intractable minimization problem defined with the 0-l loss. The extension of such methods from the binary classification setting to the more general multicategory setting turns out to be nontrivial. In this paper, our focus is to devise margin-based cl...

متن کامل

Angle-based Multicategory Distance-weighted SVM

Classification is an important supervised learning technique with numerous applications. We develop an angle-based multicategory distance-weighted support vector machine (MDWSVM) classification method that is motivated from the binary distance-weighted support vector machine (DWSVM) classification method. The new method has the merits of both support vector machine (SVM) and distance-weighted d...

متن کامل

Convergence of Large Margin Separable Linear Classification

Large margin linear classification methods have been successfully applied to many applications. For a linearly separable problem, it is known that under appropriate assumptions, the expected misclassification error of the computed “optimal hyperplane” approaches zero at a rate proportional to the inverse training sample size. This rate is usually characterized by the margin and the maximum norm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biometrika

سال: 2014

ISSN: 0006-3444,1464-3510

DOI: 10.1093/biomet/asu017